Basic Electrical Engineering formula Sheet

Capacitive Reactance

Resistors in Series

 $R_{eq} = R_1 + R_2 + R_2$

Resistors in Parallel

 $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$

Kirchhoff's Voltage Law

Sum of all voltages in a loop is equal to zero.

 $\sum Voltages = 0$

Kirchhoff's Current Law Sum of all currents

entering and leaving a node is equal to zero.

Inductive Reactance

 $X_I = 2\pi f L$ X_L = Inductive reactance

f = Frequency in hertz

L = Inductance in henry

 $X_C = \frac{1}{2\pi f C}$

 $X_C = Capacitive reactance$ f = Frequency

C = Capacitance in Farads

Ohm's Law for AC E = IZ

> $I=\frac{E}{7}$ $Z=\frac{E}{r}$

E = VoltageI = Current in Ampere

Z = Impedance in ohms

Impedance in Series $Z_{series} = Z_1 + Z_2 + Z_3$

Impedance in Parallel

 $A_{V(dB)} = 20 \log A_{V(ratio)}$

Decibel Formulas

 $A_{I(dB)} = 20 \log A_{I(ratio)}$

 $A_{P(dB)} = 10 \log A_{P(ratio)}$

 $A_{V(ratio)} = 10^{\frac{A_{v(dB)}}{20}}$ $A_{I(ratio)} = 10^{-20}$

 $A_{V(ratio)} = A_{V(ratio)} = A_{V$ True Power (P) $P = I^2 R$

Measure in watts Reactive Power (Q)

 $O = I^2 X$

Measure in Volt-Amps-

Reactive Apparent Power (S)

 $S = I^{2}Z$ Measure in Volt-Amps

www.electricalengineering.xyz